

ANSI/AF&PA PWF-2007 Approval Date: AUGUST 7, 2007

Copyright © 2007, 2009 American Forest & Paper Association, Inc.

Permanent Wood Foundation Design Specification with Commentary 2007 Edition

First Web Version: August 2007 Second Web Version: March 2009 ISBN: 0-9786245-8-0

Copyright © 2007, 2009 by American Forest & Paper Association, Inc.

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including, without limitation, electronic, optical, or mechanical means (by way of example and not limitation, photocopying, or recording by or in an information storage retrieval system) without express written permission of the American Forest & Paper Association, Inc. For information on permission to copy material, please contact:

Copyright Permission AF&PA American Wood Council 1111 Nineteenth St., NW, Suite 800 Washington, DC 20036 email: awcinfo@afandpa.org

Produced in the United States of America

i

FOREWORD

Permanent Wood Foundation (PWF) systems are intended for light frame construction including residential buildings. The realization of full performance potential requires proper attention to design, fabrication, and installation of the foundation. This document primarily addresses structural design requirements.

The Permanent Wood Foundation is a loadbearing wood-frame wall and floor system designed for both above and below-grade use as a foundation for light frame construction. The PWF specifications are based on information developed cooperatively by the wood products industry and the U.S. Forest Service, with the advice and guidance of the Department of Housing and Urban Development's Federal Housing Administration and utilizing research findings of the National Association of Home Builders Research Center. The system combines proven construction techniques along with proven below-grade moisture control technology.

Stress-graded lumber framing and plywood sheathing in the system shall be engineered to support lateral soil pressures as well as dead, live, snow, wind, and seismic loads.

Moisture control measures based on foundation engineering, construction practice, and building materials technology are employed to achieve dry and comfortable living space below-grade. The most important of these moisture control measures is a granular drainage layer surrounding the lower part of the basement that conducts ground water to a positively drained sump, preventing hydrostatic pressure on the basement walls or floor. Similarly, moisture reaching the upper part of the basement foundation wall is deflected downward to the gravel drainage system by polyethylene sheeting, or by the treated plywood wall itself. The result is a dry basement space that is readily insulated and finished for maximum comfort and conservation of energy, utility, and use of space.

Wood foundation sections of lumber framing and plywood sheathing may be factory fabricated or constructed at the job site.

American Forest & Paper Association

TABLE OF CONTENTS

Section/Title		Page
1	GENERAL REQUIREMENTS 1.1 Scope 1.2 Conformance With Standards 1.3 Terminology 1.4 Notation	2 2 2 3
2	 MATERIALS 2.1 Framing 2.2 Sheathing 2.3 Preservative Treatment 2.4 Connections In Preservative-Treated Wood 2.5 Aggregate for Footings and Fill 2.6 Caulking Compound 2.7 Polyethylene Sheeting 2.8 Polyethylene Sheeting Adhesive 	5 6 6 6 7 7 7 7 7 8
3	SOIL: TYPES, STRUCTURAL PERFORMANCE, DRAINAGE 3.1 Soil Types 3.2 Soil Structure Characteristics	9 10 10

Section/Title Pa		Page
2	ENVIRONMENTAL CONTROL 4.1 Design for Dryness 4.2 Design for Climate Control	. 11 12 13
	 5.1 General 5.2 Material Design Standards 5.3 Design Loads and Design Methodology 5.4 PWF Wall Design 5.5 Footing Design 5.6 Basement Floor Design 5.7 Design of Framing Around Openings 	15 16 16 16 18 22 24 24
REFE	RENCES	25

LIST OF FIGURES

Figure

Page

1	PWF Exterior Basement Wall Showing
	Location of Vapor Barrier With Vented
	Air Space
2	PWF Exterior Basement Wall Showing
	Location of Vapor Barrier with no Vented
	Air Space
3	Pressure Diagram Used to Calculate
	Bending Moment, Shear, and Deflection in
	Foundation Walls with Basement Resisting
	Lateral Soil Load
4	Pressure Diagram Used to Calculate
	Bending Moment, Shear, and Deflection
	in Foundation Walls with Crawl Space
	Resisting Lateral Soil Load
5	Basement Wall Anchorage to Resist Wind
	Uplift
6	Crawl Space Wall Anchorage to Resist
	Wind Uplift21

COMMENTARY TABLE OF CONTENTS

Section/	Section/Title Pag	
C1	GENERAL REQUIREMENTS	
	C1.1 Scope	29
	C1.2 Conformance with Standards	29
	C1.4 Notation	29
C2	MATERIALS	30
	C2.2 Sheathing	30
	C2.3 Preservative Treatment	30
	C2.5 Aggregate for Footings and Fill	30
C3	SOIL: TYPES, STRUCTURAL	I
	PERFORMANCE, DRAINAGE	
	C3.2 Soil Structural Characteristics	31

Section/	Title	Page
C4	ENVIRONMENTAL CONTROL	
	C4.1 Design for Dryness	32
	C4.2 Design for Climate Control	32
C5	STRUCTURAL DESIGN	33
	C5.2 Material Design Standards	33
	C5.3 Design Loads and Design Methodolo	ogy 33
	C5.4 PWF Wall Design	34
	C5.5 Footing Design	42
	C5.6 Basement Floor Design	44
REF	ERENCES	

LIST OF COMMENTARY FIGURES

Figure	Page	Figure
C4.2.1.2	Insulation of Exterior Walls in Crawl Space Construction	C5.4-9
C5.3	Typical Loads and Reactions in a	
	Permanent Wood Foundation	
C5.4-1	Lateral Soil Load Distribution and	
	Reactions for PWF Basement Wall	C5.4.4
	Stud	
C5.4-2	Lateral Soil Load Distribution and	C5.4.4
	Reactions for PWF Basement Wall	~ • •
	Stud in Calculating Shear Forces	C5.4.5
C5.4-3	Calculating Shear at a Section "x" in	
	the PWF Stud	C5.5.2
C5.4-4	Calculating Bending Moment at a	C5.5.2
	Section "x" in the PWF Stud	
C5.4-5	Lateral Soil Load Distribution and	C5.5.3
	Reactions for PWF Crawl Space	
	Wall Stud	C5.5.3
C5.4-6	Net Lateral Soil Load Distribution and	
	Reactions for PWF Crawl Space	C5.6.2
	Wall Stud	
C5.4-7	Calculating Shear at a Section "x" in	
	the PWF Crawl Space Stud	
C5.4-8	Shear and Bending Moment for the	
	Portion of Crawl Space PWF Stud	
	Located Above Inside Backfill Height	
	and Subjected to Lateral Forces Due to	
	Outside Backfill Only	

Figure	Page
C5.4-9	Shear and Bending Moment for the Portion of PWF Stud Located Below Inside Backfill Height and Subjected to Lateral Forces Due to Both Outside
C5.4.4.1	and Inside Backfill
C5.4.4.2	Concrete Slab to Resist Lateral Forces at the Bottom of a Crawl Space Wall 41
C5.4.5.1	Net Resultant of Forces Due to Differential Backfill Height
C5.5.2.2-1	Plywood Reinforcing Strip
C5.5.2.2-2	Forces on Cantilevered Portion of
	Footing Plate
C5.5.3.2-1	Distribution of Axial Load from Wood
	Footing Plate
C5.5.3.2-2	Spread Footing using Alternating
	Layers of Wood Planks44
C5.6.2.2	Blocking for PWF End Walls44