

SIGNIFICANT CHANGES TO THE

# CALIFORNIA BUILDING CODE

2013 EDITION

# **Contents**



| PART 1 Administration Chapters 1 and 2                                                      | 1  | <ul> <li>403.6.1         High-Rise Buildings—Fire Service         Access Elevators     </li> </ul> | 21 |
|---------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------|----|
| ■ <b>110.3.4, 110.3.10</b> . Frame and Final Inspections                                    | 2  | <ul><li>406.4</li><li>Public Parking Garages</li></ul>                                             | 23 |
| ■ 202<br>Definitions—Group I-3 Occupancies                                                  | 3  | <ul> <li>406.5.2.1</li> <li>Open Parking Garages—Openings</li> <li>below Grade</li> </ul>          | 25 |
| PART 2                                                                                      |    | <b>407, 408</b> Group I-3 Occupancies                                                              | 27 |
| Building Planning<br>Chapters 3 through 6                                                   | 6  | <b>410.6.3, 202</b> Technical Production Areas                                                     | 34 |
| <ul> <li>303.1.3         Assembly Rooms Associated with Group E Occupancies     </li> </ul> | 8  | • 412.4.6.2<br>Aircraft Hangar Fire Areas                                                          | 37 |
| <ul> <li>303.3         Occupancy Classification of Casino Gaming Floors</li> </ul>          | 10 | <ul> <li>420.7</li> <li>Construction Waste Management for Group R Occupancies</li> </ul>           | 39 |
| ■ 303.3, 306.2 Occupancy Classification of Commercial Kitchens                              | 12 | ■ <b>503.1</b> Building Height and Area Limitations—Solar Photovoltaic System                      | 40 |
| ■ Table 307.1(1), Section 307.4 Facilities Generating Combustible Dusts                     | 14 | ■ <b>505.2.2</b> Mezzanine Means of Egress                                                         | 42 |
| ■ 308.5 Institutional Group I-3 Occupancies                                                 | 15 | <ul> <li>507.1</li> <li>Unlimited Area Buildings—</li> <li>Accessory Occupancies</li> </ul>        | 44 |
| ■ 403.3, 403.5<br>High-Rise Buildings—Fire and<br>Smoke Protection                          | 17 | ■ <b>509</b> Incidental Uses—General Provisions                                                    | 46 |
|                                                                                             |    | ■ <b>509</b> Incidental Uses—Separation and Protection                                             | 48 |

### iv CONTENTS

|    | Table 509 Incidental Uses—Rooms or Areas                                        | 50 | ■ 717.5.4  Fire Damper Exemption for Fire Partitions                                                                           | 86  |
|----|---------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------|-----|
| •  | <b>602.1</b> Fire-Resistance Rating Requirements for Solar Photovoltaic Systems | 52 | <ul> <li>903.2.2</li> <li>Sprinklers in Ambulatory</li> <li>Care Facilities</li> </ul>                                         | 88  |
| Fi | ART 3 re Protection napters 7 through 9                                         | 54 | ■ 903.2.4, 903.2.7, 903.2.9<br>Furniture Storage and Display<br>in Group F-1, M, and S-1 Occupancies                           | 90  |
| •  | <ul><li>701.2</li><li>Multiple-Use Fire Assemblies</li><li>703.4</li></ul>      | 56 | <ul> <li>903.2.6, 907.2.6.3, 907.3.2</li> <li>Fire Protection Systems in Group I-3 Occupancies</li> </ul>                      | 92  |
|    | Establishing Fire-Resistance Ratings 703.7                                      | 58 | ■ 903.2.11.1.3<br>Sprinkler Protection for Basements                                                                           | 96  |
|    | Identification of Fire and Smoke<br>Separation Walls                            | 59 | <ul> <li>903.3.1.1.1</li> <li>Sprinkler Exemption for</li> <li>Solar Photovoltaic Systems</li> </ul>                           | 98  |
|    | <b>705.2</b> Extent of Projections beyond Exterior Walls                        | 61 | ■ 903.3.5.2<br>Secondary Water Supply                                                                                          | 100 |
| •  | <b>705.12</b> Exterior Graphics on Exterior Walls of High-Rise Buildings        | 63 | ■ 904.3.2 Actuation of Multiple Fire-Extinguishing Systems                                                                     | 102 |
| •  | <b>706.2</b> Double Fire Walls                                                  | 65 | <ul> <li>906.1</li> <li>Portable Fire Extinguishers</li> <li>in Group P. 2 Occupancies</li> </ul>                              | 104 |
| •  | <b>707.8, 707.9</b> Intersections of Fire Barriers at Roof Assemblies           | 67 | <ul> <li>in Group R-2 Occupancies</li> <li>907.2.1.2</li> <li>Emergency Voice/Alarm</li> <li>Communication Captions</li> </ul> | 104 |
|    | <b>712</b><br>Vertical Openings                                                 | 69 | 907.2.9.3                                                                                                                      | 103 |
|    | <b>714.4.1.1.2</b> Floor Penetrations of Horizontal Assemblies                  | 71 | Smoke Detection in Group R-2<br>College Buildings                                                                              | 107 |
| •  | <b>714.4.1.2</b> Interruption of Horizontal Assemblies                          | 73 | <ul> <li>907.2.11.2, 907.2.11.5</li> <li>Smoke Alarms for Group R-2,</li> <li>R-2.1, R-3, R-3.1, R-4 and I-1</li> </ul>        | 110 |
| •  | <b>715.4</b> Exterior Curtain Wall/Floor Intersection                           | 75 | ■ 907.6 Fire Alarm Systems for                                                                                                 |     |
|    | <b>Table 716.5</b> Opening Protection Ratings and Markings                      | 77 | High-Rise Buildings ■ 911.1.6                                                                                                  | 112 |
| •  | <b>716.5.5.1</b> Glazing in Exit Enclosure and Exit                             | 00 | Fire Command Center Ventilation in High-Rise Buildings                                                                         | 114 |
| •  | Passageway Doors <b>Table 716.6</b> Fire-Protection-Rated Glazing               | 80 | <ul><li>913.6</li><li>Fire Pump Fuel Supply in High-Rise Buildings</li></ul>                                                   | 115 |
| •  | <b>716.6.4</b> Wired Glass in Fire Window Assemblies                            | 84 |                                                                                                                                |     |

| PART 4 Means of Egress Chapter 10 |                                                                                        | 116 | PART 6 Building Envelope, Structural Systems, and Construction Materials | 1.40 |
|-----------------------------------|----------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------|------|
|                                   | <b>1004.1.1</b> Cumulative Occupant Loads                                              | 118 | Chapters 12 through 26  1203.2                                           | 148  |
|                                   | 1004.1.2, Table 1004.1.2                                                               | 110 | Attic Ventilation                                                        | 150  |
|                                   | Design Occupant Load—Areas without<br>Fixed Seating                                    | 119 | ■ 1203.4.2.1  Mechanical Ventilation of Bathrooms                        | 152  |
| •                                 | 1005<br>Means of Egress Capacity Determination                                         | 121 | ■ <b>1207</b> Sound Transmission                                         | 153  |
|                                   | 1008.1.9.7<br>Delayed Egress Locks for Courtrooms                                      | 125 | ■ 1212 Pollutant Control                                                 | 154  |
|                                   | 1008.1.9.9<br>Electromagnetically Locked Egress Doors                                  | 126 | ■ <b>1507.16</b> Roof Gardens and Landscaped Roofs                       | 155  |
| •                                 | 1008.1.9.12<br>Access-Controlled Elevator Lobby<br>Doors in High-Rise Office Buildings | 128 | ■ <b>1507.17, 202</b> Photovoltaic Systems                               | 157  |
| •                                 | 1009, 1010, 202<br>Interior Stairways and Ramps                                        | 130 | Table 1004.0                                                             | 159  |
| ۰                                 | <b>1009.1</b><br>Application of Stairway Provisions                                    | 134 | <ul><li>Table 1604.3</li></ul>                                           | 166  |
| ١                                 | <b>1013.1, 1013.8</b> Guards at Operable Windows                                       | 135 | Risk Categories  1605.2                                                  | 167  |
| ١                                 | <b>1015.1, 1025.4, 1028.1</b> Means of Egress for Group I-3 Occupancies                | 138 | Load Combinations Using Strength<br>Design of Load and Resistance        |      |
| •                                 | <b>1015.2</b> Exit or Exit Access Doorway Arrangement                                  | 141 | Factor Design  1605.3                                                    | 170  |
| •                                 | <b>1022.5</b> Enclosure Penetrations of Interior                                       |     | Load Combinations Using Allowable<br>Stress Design                       | 172  |
|                                   | Exit Stairways  1028.1.1.1                                                             | 142 | ■ Table 1607.1<br>Minimum Live Loads                                     | 175  |
|                                   | Separation of Spaces under Grandstands<br>and Bleachers                                | 144 | ■ <b>1607.7</b> Heavy Vehicle Loads                                      | 179  |
|                                   |                                                                                        |     | ■ 1609, 202<br>Determination of Wind Loads                               | 181  |
| PART 5 Accessibility              |                                                                                        |     | ■ <b>1613.3.1, 202</b> Mapped Acceleration Parameters                    | 191  |
| CI                                | napter 11<br>Chapter 11A                                                               | 145 | ■ <b>1613.5</b> Ballasted Photovoltaic System                            | 197  |
|                                   | Housing Accessibility                                                                  | 146 | ■ 1704.3                                                                 |      |
|                                   | Chapter 11B<br>Accessibility                                                           | 147 | Statement of Special Inspections                                         | 199  |
|                                   |                                                                                        |     | ■ 1705.2  Special Inspection of Steel Construction                       | 203  |

### **vi** CONTENTS

| Required Verification and Inspection of                                      |     | Load and Resistance Factor Design                                                 | 230         |
|------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|-------------|
| Concrete Construction  1705.4                                                | 207 | ■ 2406.1, 2406.4<br>Safety Glazing—Hazardous Locations                            | 232         |
| Special Inspection of Masonry<br>Construction                                | 209 | ■ 2406.2<br>Safety Glazing—Impact Test                                            | 238         |
| ■ 1705.16 Special Inspection of Fire-Resistant Penetration and Joint Systems | 211 | ■ 2510.6 Water-Resistive Barriers for Stucco Applications                         | 240         |
| ■ 1803.5.12 Geotechnical Reports for Foundation Walls and Retaining Walls    | 212 | ■ 2603.10, 2603.10.1<br>Special Approval of Foam Plastics                         | 242         |
| ■ Chapter 19 Concrete Construction                                           | 213 | PART 7                                                                            |             |
| ■ 1905.1.3 Seismic Detailing of Wall Piers                                   | 217 | Building Services, Special Devices, and Special Conditions Chapters 27 through 34 | <b>24</b> 4 |
| <ul><li>2101.2</li><li>Design Methods for Masonry Structures</li></ul>       | 219 | ■ 3007 Fire Service Access Elevators                                              | 245         |
| ■ 2206 Composite Structural Steel and Concrete Structures                    | 220 | ■ 3008<br>Occupant Evacuation Elevators                                           | 250         |
| ■ 2210.2 Seismic Requirements for Cold-Formed                                |     | ■ 3111<br>Solar Photovoltaic Panels/Modules                                       | 254         |
| Steel Structures                                                             | 222 | <ul> <li>Appendix L</li> <li>Earthquake-Recording Instruments</li> </ul>          | 258         |
| ■ 2305 General Design Requirements for Lateral-Force-Resisting Systems       | 224 | <ul> <li>Appendix M         Tsunami-Generated Flood Hazards     </li> </ul>       | 260         |
| ■ 2306 Allowable Stress Design                                               | 226 |                                                                                   |             |

# **Preface**

he purpose of Significant Changes to the California Building Code 2013 Edition is to familiarize building officials, fire officials, plans examiners, inspectors, design professionals, contractors, and others in the construction industry with many of the important changes in the 2013 California Building Code (CBC). This publication is designed to assist those code users in identifying the specific code changes that have occurred and, more important, understanding the reason behind the change. It is also a valuable resource for jurisdictions in their code adoption process.

Only a portion of the total number of code changes to the CBC are discussed in this book. The changes selected were identified for a number of reasons, including their frequency of application, special significance, or change in application. However, the importance of those changes not included is not to be diminished. The 2012 International Building Code® (IBC®) is the basis for the CBC. Further information on all code changes can be found in the Code Changes Resource Collection, available from the International Code Council® (ICC®). The resource collection provides the published documentation for each successful code change contained in the 2012 IBC since the 2009 edition.

This book is organized into seven general categories, each representing a distinct grouping of code topics. It is arranged to follow the general layout of the CBC, including code sections and section number format. The table of contents, in addition to providing guidance in use of this publication, allows for quick identification of those significant code changes that occur in the 2013 CBC.

Throughout the book, each change is accompanied by a photograph, an application example, or an illustration to assist and enhance the reader's understanding of the specific change. A summary and a discussion of the significance of the changes are also provided. Each code change is identified by type, be it an addition, modification, clarification, or deletion. The code change itself is presented in a format similar to the style utilized for code-change proposals. Deleted code language is shown with a strike-through, whereas new code text is indicated by underlining. As a result, the actual 2013 code language is provided, as well as a comparison with the 2010 language, so the user can easily determine changes to the specific code text.

As with any code-change text, Significant Changes to the California Building Code 2013 Edition is best used as a study companion to the 2013 CBC. Because only a limited discussion of each change is provided, the code itself should always be referenced in order to gain a more compre-

hensive understanding of the code change and its application. The commentary and opinions set forth in this text are those of the authors and do not necessarily represent the official position of the ICC. In addition, they may not represent the views of any enforcing agency, as such agencies have the sole authority to render interpretations of the CBC. In many cases, the explanatory material is derived from the reasoning expressed by the code-change proponent.

Comments concerning this publication are encouraged and may be directed to the ICC at significantchanges@iccsafe.org.

# About the California Building Code®

Building officials, design professionals, and others involved in the building construction industry recognize the need for a modern, up-to-date building code addressing the design, construction and installation of building systems through requirements emphasizing performance. The International Building Code (IBC), 2012 edition, is the basis for the 2013 California Building Code (CBC) and is intended to meet these needs through model code regulations that safeguard the public health and safety in all communities, large and small. The IBC is kept up to date through the open code-development process of the International Code Council (ICC). The provisions of the 2009 edition, along with those code changes approved through 2010, make up the 2012 edition. The ICC, publisher of the IBC, was established in 1994 as a nonprofit organization dedicated to developing, maintaining, and supporting a single set of comprehensive and coordinated national model building construction codes. Its mission is to provide the highest quality codes, standards, products, and services for all concerned with the safety and performance of the built environment.

The CBC is one in a family of California building codes (California Code of Regulations, Title 24) that are published on a triennial basis. This comprehensive building code establishes minimum regulations for building systems by means of prescriptive and performance-related provisions. It is founded on broad-based principles that make possible the use of new materials and new building designs. The California Building Standards Commission (CBSC) is responsible for the administration of each code cycle, which includes the proposal, review and adoption processes. Supplements and errata are issued throughout the cycle.

# Acknowledgments

A special thank you is extended to Scott Stookey, former Senior Technical Staff with ICC for his assistance with the fire protection portions of this text. Thanks also to ICC staff members Alan Carr, Kim Paarlberg, Bill Rehr, and Kermit Robinson and to Stuart Tom, P.E., building official of Glendale, California for their valued review and input.

## **About the Authors**

Douglas W. Thornburg, AIA, CBO International Code Council Vice President and Technical Director of Product Development and Education

Douglas W. Thornburg is the Vice President and Technical Director of Product Development and Education for the International Code Council (ICC), where he provides leadership in technical development and positioning of support products for the council. In addition, Doug develops and reviews technical products, reference books, and resource materials relating to construction codes and their supporting documents. Prior to employment with the ICC in 2004, he spent nine years as a code consultant and educator on building codes. Formerly Vice-President/Education for the International Conference of Building Officials (ICBO), Doug continues to present building code seminars nationally and has developed numerous educational texts and resource materials, including the International Building Code Handbook. He was presented with ICC's inaugural Educator of the Year Award in 2008, in recognition of his outstanding contributions to education and professional development. A graduate of Kansas State University and a registered architect, Doug has more than 30 years of experience in building code training and administration, including 10 years with the ICBO and 5 years with the City of Wichita, Kansas. He is certified as a building official, building inspector, and plans examiner, as well as in seven other code enforcement categories.

John R. Henry, P.E. International Code Council Principal Staff Engineer

John R. Henry is a Principal Staff Engineer with the International Code Council (ICC) Business and Product Development Department, where he is responsible for the research and development of technical resources pertaining to the structural engineering provisions of the International Building Code (IBC). John also develops and presents technical seminars on the structural provisions of the IBC. He has a broad range of experience that includes structural design in private practice, plan-check engineering with consulting firms and building department jurisdictions, and 14 years as an International Conference of Building Officials (ICBO)/ ICC Staff Engineer. John graduated with honors from California State University in Sacramento with a Bachelor of Science Degree in Civil Engineering and is a Registered Civil Engineer in the State of California. He is a member of the American Society of Civil Engineers (ASCE) and the Structural Engineers Association of California (SEAOC) and is an ICC Certified Plans Examiner. John has written several articles on the structural provisions of the IBC that have appeared in Structure Magazine and Structural Engineering and Design magazine's Code Series. He is also the coauthor of the International Building Code Handbook.

Jay Woodward International Code Council Senior Staff Architect

Jay is a senior staff architect with the ICC's Business and Product Development department and works out of the Lenexa, Kansas, Distribution Center. His current responsibilities include serving as the Secretariat for the ICC A117.1 standard committee and assisting in the development of new ICC publications.

With more than 28 years of experience in building design, construction, code enforcement, and instruction, Jay's experience provides him with the ability to address issues of code application and design for code enforcement personnel as well as architects, designers, and contractors. Jay has previously served as the Secretariat for the ICC's International Energy Conservation Code and the International Building Code's Fire Safety Code Development committee.

A graduate of the University of Kansas and a registered architect, Jay has also worked as an architect for the Leo A. Daly Company in Omaha, Nebraska; as a building Plans Examiner for the City of Wichita, Kansas; and as a Senior Staff Architect for the International Conference of Building Officials (ICBO) prior to working for the ICC. He is also author of Significant Changes to the A117.1 Accessibility Standard 2009 Edition.

Paul D. Armstrong, P.E., CBO CSG Consultants, Inc. Southern California Regional Manager

Mr. Armstrong is the Southern California Regional Manager for CSG Consultants, Inc. He has worked for a number of private municipal consulting firms and in that capacity served as the Building Official for the City of El Monte. Prior to working for private firms, he worked for 14 years for the International Code Council and the International Conference of Building Officials, ending his time as the initial ICC Vice President of Architectural and Engineering Services. He also served as the drafting secretariat for the 2000 International Residential Code. He represented the model code organizations to many federal, state and local agencies and is a recognized lecturer on many code-related topics. Mr. Armstrong graduated from California State University at Long Beach and is a Professional Engineer in the State of California and a Certified Building Official.

## **About the ICC**

The International Code Council is a member-focused association. It is dedicated to developing model codes and standards used in the design, build and compliance process to construct safe, sustainable, affordable and resilient structures. Most U.S. communities and many global markets choose the International Codes. ICC Evaluation Service (ICC-ES) is the industry leader in performing technical evaluations for code compliance fostering safe and sustainable design and construction.

#### **Headquarters:**

500 New Jersey Avenue, NW, 6th Floor Washington, DC 20001-2070

#### **District Offices:**

Birmingham, AL; Chicago, IL; Los Angeles, CA

1-888-422-7233 www.iccsafe.org

# About the California Building Officials (CALBO)

Pounded in 1962, California Building Officials (CALBO) represents local city and county governments throughout the entire state of California. As a nonprofit 501(c)6 organization, CALBO is dedicated to promoting public health and safety in building construction through responsible legislation, education and building code development. CALBO members are primarily responsible for enforcing building code requirements in an estimated 95 percent of the buildings constructed in the state. CALBO ensures that proper public health and structural safety requirements, codes and standards are adhered to within the built environment. The organization protects the citizens served and the overall safety of the public.

www.calbo.org